Detecting Malicious Web Links and Identifying Their Attack Types

نویسندگان

  • Hyunsang Choi
  • Bin B. Zhu
  • Heejo Lee
چکیده

Malicious URLs have been widely used to mount various cyber attacks including spamming, phishing and malware. Detection of malicious URLs and identification of threat types are critical to thwart these attacks. Knowing the type of a threat enables estimation of severity of the attack and helps adopt an effective countermeasure. Existing methods typically detect malicious URLs of a single attack type. In this paper, we propose method using machine learning to detect malicious URLs of all the popular attack types and identify the nature of attack a malicious URL attempts to launch. Our method uses a variety of discriminative features including textual properties, link structures, webpage contents, DNS information, and network traffic. Many of these features are novel and highly effective. Our experimental studies with 40,000 benign URLs and 32,000 malicious URLs obtained from real-life Internet sources show that our method delivers a superior performance: the accuracy was over 98% in detecting malicious URLs and over 93% in identifying attack types. We also report our studies on the effectiveness of each group of discriminative features, and discuss their evadability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

Detecting Fake Websites Using Swarm Intelligence Mechanism in Human Learning

The internet and its various services have made users to easily communicate with each other. Internet benefits including online business and e-commerce. E-commerce has boosted online sales and online auction types. Despite their many uses and benefits, the internet and their services have various challenges, such as information theft, which challenges the use of these services. Information thef...

متن کامل

Analyzing new features of infected web content in detection of malicious web pages

Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...

متن کامل

Detecting malicious JavaScript

The increased use of the World Wide Web and JavaScript as a scripting language for Web pages have made JavaScript a popular attack vector for infecting users' machines with malware. Additionally, attackers often obfuscate their code to avoid detection, which heightens the challenge and complexity of automated defense systems. We present two analyses of malicious scripts and suggest how they cou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011